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GAN output: Which are real, which are fake ? 
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GAN output: Which are real, which are fake ? 
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Karras, T., Aila, T., Laine, S., & Lehtinen, J.  Progressive 

growing of gans for improved quality, stability, and variation. 
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What is a GAN ? 
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1. Do GANs generate new identities? 

• Applications: Dataset-anonymisation; semi-supervised learning with distractor images 

2. Can GAN Images be used in Biometric Systems? 

• Applications: Non-regression tests; Performances extrapolation; 

Algorithm-improvement evaluation; Data-augmentation with synthetic sets of mated 

images … 
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1. Do GANs generate 
new identities? 
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Typical qualitative analysis of overfitting 
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 Visual, nearest-neighbour analyses are typically performed… 

Synthetic images: 

Nearest neighbours in VGGNet feature-space: 

Images taken from Karras et al. (2018) 

• What about the rest of the space? How frequently do look-alikes occur? 
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Assessing the frequency of look-alikes (Nearest neighbors) 

Matching scores generated using a recent biometric network 

All Matching scores  Nearest neighbors scores  

ProGAN : Progressive Growing of GANs for Improved Quality, Stability, and Variation. T.Karras & All, ICLR. 2018 

StyleGAN : A style-based generator architecture for generative adversarial networks. T.Karras & All, CVPR. 2019 
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2. Can we use synthetic 
images as distractors? 
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Performances with real and fake distractors 

• Synthetic images can be used as distractors to estimate performance with real data. 

• As images from GANs exhibit less variability, extrapolation for very large datasets is still 

uncertain. 
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Using GANs images as distractors in 1:N biometric matching 

N = 10k real

N = 110k real

N = 10k real + 100k fake

N = 10k real + 1M fake
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3. Can we generate 
multiple images of the 
same fake identity? 
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InterFaceGAN, Shen et al. (2020) 
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Images taken from Shen et al. (2020) 

The “InterFaceGAN” method manipulates attributes by traversing the GAN’s latent 

space in the direction perpendicular to a particular decision boundary. 
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IVI-GAN, Marriott et.al. (arxiv 2018 – FG 2020) 
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Pose 

Background Lighting 

Pre-trained 

biometric constraint 
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SD-GAN, Donahue et.al. (2018) 
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Training pair (𝒙) 
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SD-GAN + Triplet loss, Marriott et.al. (IJCB 2020) 
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Training pair (𝒙) Imposter pair (𝒙 ) 
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Disentangled Datasets 
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 InterFaceGAN (CelebA-HQ) 

IVI-GAN (CelebA) 

SD-GAN (Mugshots) 

SD-GAN + Triplet (Mugshots) 
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4. Can GAN Images be 
 used in Biometric 
 Systems?  
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Biometric scores for mated pairs 
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 Matching score distributions within mated sets, with default parameters 

• Mated pairs of synthetic images can be used to compute biometric scores. 

 

• Scores are higher for imposter tests with GAN images.  

• Identities are not so well disentangled from other attributes. 

• All methods have explicit or implicit parameters leading to different intra-class variability. 18 
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Biometrics Evaluation of GANs 
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 Biometric evaluation with various standard 

deviations for intra-class distributions 
SD-GAN + Triplet loss 

ZIV is a Gaussian random 

vector controlling the 

intra-class variability 

• GANs can be tuned to adjust intra-class variability, in order to reach desired biometric 

performances. 19 
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Evaluation of Biometric Algorithm Improvements 
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 Comparison of biometric performance-evolution on real and synthetic datasets 

• Most improvements in biometric algorithms can be seen on synthetic datasets. 
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Conclusions 
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 1. Overfitting is not occurring. New IDs are being generated. 

2. Synthetic images allow wider system tests than with the replication of a 

small dataset. 
• Without privacy concerns 

• Non-regression test, speed test, loading test … 

• Moderate control of pose, illumination, age, glasses and gender distributions 
 

3. Synthetic Images can be used to compute some biometric performances. 

• Behaviour with larger gallery 

• Comparison of different algorithms 
 

4. Today, none of the assessed methods was able to fully disentangle 

identity. It is still a research topic. 
• Not yet ready to be used as training datasets for biometric algorithms 
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Questions ? 

 

 

 
stephane.gentric@idemia.com 
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